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NUMERICAL ALGORITHMS FOR STRONG DISCONTINUITIES IN
ELASTIC-PLASTIC SOLIDS

JOHN A. TRANGENSTEIN AND RICHARD B. PEMBER*®

Abstract. In this paper the implementation of second-order Godunov methods for dynamic wave
propagation in one-dimensional elastic-plastic solids is investigated. First, the Lagrangian form of
the algorithm is reviewed, and then the algorithm is extended to the Eulerian frame of reference.
This extension requires additional evolution equations to handle the history of the material along
particle paths. Both the Lagrangian and Eulerian versions of the algorithm require appropriately
accurate approximations to the solution of Riemann problems, in order to represent the interaction
of waves at cell boundaries. Two inexpensive approximations to the solution of the Riemann problem
are constructed, and the resulting algorithms are tested against the analytic solution of the Riemann
problem for longitudinal motion in an elastic-plastic bar. These approximations to the Riemann
problem are shown to work well, even for strong discontinuities. Finally, the numerical experience
gained from the simple longitudinal bar problem is used to design an algorithm for strong shocks
predicted by a realistic soil model.

1. Introduction. The traditional approach to the numerical simulation of shocks
in solids is to use piecewise linear finite elements (i.e., centered finite differences) for
the spatial discretization, coupled with some form of the method of lines in time
(3, 6, 33]. Typically, these methods produce significant numerical oscillations near
discontinuities, unless stabilized by artificial viscosities [6, 33].

In gas dynamics, these centered-difference methods have been replaced by mod-
ern upwind shock-capturing methods, such as flux-corrected transport pioneered by
Boris and Book [7] and (for example) implemented on unstructured meshes in a finite
element setting by Lohner {22], total-variation diminishing techniques developed by
Harten [14] and applied to aerodynamic problems by (for example) Yee [32], essen-
tially non-oscillatory schemes developed by Harten and Osher [17] and extended by
(for example) Shu [26], or higher-order Godunov methods developed by van Leer [31]
and extended by (for example) Colella and Woodward (8, 10]. Our goal is to inves-
tigate the application of the last of these methods to the computation of shocks in
elastic-plastic solids.

The application of upwind methods to shocks in solids has not been trivial, and
has required us to investigate the mathematical formulation of the problem. After
writing the equations of motion in first-order form, we analyzed their characteristic
structure, including the effect of rotationally-invariant stress-rate measures on the
acoustic tensor {c.f. [23]). This enabled us to describe algorithms for the integration of
one-dimensional Lagrangian equations of motion, employing an approximate Riemann
solver derived from a weak-wave expansion [29)].

The current stage in our research involves several new issues. One is to extend the
previous Godunov method to the Eulerian frame of reference. Here, an important task
is to develop additional equations to determine the evolution along particle paths of the
history parameters for the plasticity models; this development is necessary because the
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material models are evaluated at the Eulerian cell centers, but the material particles do
not stay fixed on the numerical grid in the Eulerian frame. Another difficulty with the
Eulerian frame is due to the presence of unsteady contact discontinuities, such as occur
at interfaces between distinct materials, or at parts of the same material with different
histories. These contact discontinuities are smeared by numerical dissipation in the
Eulerian front-capturing schemes since (unlike shocks) the contact discontinuities are
not self-sharpening. Yet another difficulty is associated with the use of Riemann
problems to determine the numerical fluxes used in the conservative difference step
of Godunov’s method. Ideally, these fluxes are evaluated at the stationary state in
the solution to the Riemann problem. In the Lagrangian frame of reference, the flux
at the stationary point is given by the flux at the constant state on cither side of
the contact discontinuity. In the Eulerian frame, the state moving with zero speed
could occur in one of the nonlinear wave families, depending on the size of the normal
velocity. As a result, in the Eulerian frame it is necessary to develop more complicated
approximations to the Riemann problem solution than are needed in the Lagrangian
frame.

Another issue is to demonstrate the convergence of the numnerical algorithms. For
nonlinear solid mechanics, the existence of global solutions to initial value problems
has not yet been demonstrated; furthermore, the convergence of higher-order numer-
ical methods for hyperbolic systems has also not been established. Our approach is
therefore more experimental. By using the analytic solution to the Riemann problem
for the Antman-Szymczak model [30], we can test our algorithms on a set of problems
that represent, in some sense, a full range of (one-dimensional) elastic-plastic waves.
This set of experiments helps us to determine the applicability of our weak-wave ap-
proximation to the solution of the Riemann problem.

Our final goal in this paper is to apply the experience gained with the Antman-
Szymczak model to models of practical importance. We can use the same techniques
in combination with more complicated equations of state to study interesting wave
propagation problems. For this example, we have selected a calculation of an explosion
inside a clay sphere.

2. Longitudinal motion in 1-d. We shall begin by describing the equations of
motion for longitudinal deformation of a one-dimensional solid. Let v be the velocity, o
be the stress, €, be the displacement gradient, p, be the density at rest, 7 denote time
and z, denote distance in the original (Lagrangian) configuration. Then conservation
of momentum and equality of mixed partial derivatives of the displacement yield the
following first-order system of conservation laws:

(2.1) i[p”]_a["}:o.

ar | € Jdz, | v
If we allow transverse motion in the material, then the system of equations (2.1)
must be expanded; see [29] for details. This system of equations can be closed by
prescribing a kinetic equation of state, relating the stress to other variables in the
motion. However, kinetic equations of state can take a number of different forms, the
description of which would take us far beyond the scope of this paper. Instead, we will

describe a simple model that will be used for the bulk of our examples, and introduce
a more realistic model in §6.
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In the Antman-Szymczak model (2], the stress o is an increasing function of the
displacement gradient ¢, and a history parameter :

(2.2) o =o0(e,,m).

For any physically realistic displacement gradient ¢, there are upper and lower bounds
on the stress o, given by the functions ¢(¢,) and t(¢.), representing the plastic com-
pression and tension curves, respectively. Between these bounds, the stress is given by
the elastic curves ¢ = e(e, 7). Plastic compression occurs if and only if the material
is at yield, and the time rate of change of the displacement gradient is negative:

< 0 during plastic compression.
T

c(ey) = e(€y,m) and a2

or
Similarly,

t(e,) = e(e,,m) and %

ar

> 0 during plastic tension.

r

There are other constraints placed on these functions and variables in order to make
a consistent and realistic model; please see [2] or [30] for details. Specific forms of
the elastic and plastic curves are presented at the end of the next section, where the
algorithm for the evaluation of ¢ is described.

It is easy to see that (2.1) is hyperbolic. This is because we can write the equation

in the form
i py | 0 '585 _a_ pLv | _ 0
ar €p L 0 BmL €L ’

PL
where the eigenvectors and eigenvalues of the matrix of flux derivatives are given by
56 »
0 Bdg—L - ALpL ALpy A, 0 Ao ALpyL
o 0 -1 0 A || -1 1 '

Since stress is an increasing function of displacement gradient, the characteristic speed

. [1 do
(2.3) AL = ;7(,)—(]—

is real. TFor material particles at the elastic limit, this characteristic speed is not
uniquely defined; depending on the loading direction, the appropriate characteristic
speed may be given by the slope of the elastic curves during unloading, or by the slope
of the appropriate plastic curve during plastic yield.

We also note that the total energy density

1
2

v =

2 /‘L
Ly + Ud(l. ’
€0

is the “entropy function” for (2.1) {12]; the “entropy flux” is the rate of work per
volume



Since v is a convex entropy function, we can add a small viscous term to the right-hand
side of (2.1) and derive
Jv 0
o 96
or Oz —
in the limit as the viscosity approaches zero [21]. This shows that for motions achieved
in the limit of vanishing viscosity, the total energy cannot increase in time.
We also note that at a discontinuity, the solution to (2.1) satisfies the jump con-
ditions [11]

0,

0 0 PL PL
(2.4) -l o + |0 = pLv - | pov s,
v R v L € R € L

where the subscripts on the square brackets label the states on the two sides of the dis-
continuity, and s is the speed of the discontinuity. Thus, at a zero-speed discontinuity
(i.e., a contact discontinuity), the velocity and stress are continuous while the density,
strain and displacement may have jumps. At a moving discontinuity the density is
continuous while the velocity, stress, strain and displacement may jump. In this case,
we can write the shock speed in the form

s=% -}— IR — 9L
oL (fL)R - (CL)L .

At a discontinuity achieved in the limit of vanishing viscosity, the entropy function
satisfies

(Pr — ¢1.) < (vr —vp)s .
Since the entropy function is convex, it is also possible to show [12] that the chord
condition

O, — 0L, OR — O,
(2:5) 0< { A A (eL)L}

must be satisfied for all ¢, between (¢, ), and (¢, )g.
Next, we will describe the Eulerian form of the equations of motion,

o, of
or 8$E B

Here the vectors of conserved quantities and fluxes are (respectively)

(2.6) 0.
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Also, pg = p(1+ €,) is the density in the current configuration,
€
1 + €,
is the Eulerian displacement gradient, g is the plastic history parameter at the begin-

ning of the particle path that leads to the current particle position, and z is position
in the current confignration.

€p =




3. Lagrangian algorithm. At this point we have described the problem in both
the Lagrangian and Eulerian frames of reference, discussed the hyperbolicity and char-
acteristic speeds for the equations of motion, and presented the conditions determining
physically correct shocks. The next task is to describe our approach to the numerical
solution. We will begin with the Lagrangian version of the method. There are six
steps in our second-order algorithm:

1. characteristic analysis and timestep estimation,
monotonized slope computation,
characteristic tracing,
flux computation,
conservative differences, and
6. stress update.
We begin a timestep with cell-centered values of the velocities, displacement gradients
and stresses. Qur goal is to compute these quantities at the next time level.

The first step requires that we compute characteristic speeds associated with the
current loading conditions; this is discussed in detail in [29]. In particular, the charac-
teristic speeds and directions can be determined from the eigenvalues and eigenvectors
of the acoustic tensor. For the Antman-Szymczak model, the form of the characteris-
tic speed was derived in (2.3). As we noted above, this speed is not uniquely defined
when the material is at an elastic limit. For example, in cells undergoing plastic com-

s o N

pression at the beginning of the timestep we take A\, = _/%1:5%' For plastic tension,
—_ 1 0 : . — 1 Je
we take A, = TR Otherwise, we use the elastic speed, A, = TR However,

for purposes of determining the size of the timestep, we always use the fastest elas-
tic speed in a Courant-Friedrichs-Lewy (CFL) condition, and typically reduce it by
some factor (called the CFL factor) to allow for the discrete sampling of the larger
characteristic speeds that may form during the motion. This timestep selection uses
the elastic speed because it is always larger than the plastic speeds, and the timestep
must be limited by the fastest characteristic speed that might occur in the motion.

The next step in the algorithm is to compute monotonized slopes. The goal of this
step is to construct values for the flux variables (i.e., o and v) at the cell edges. Here,
we remark that two alternatives are possible. We could have applied the Godunov
algorithm in the traditional form, by constructing slopes in the conserved quantities pv
and ¢, as in [2]. One drawback of this approach is that it introduces numerical viscosity
at contact discontinuities, where velocity and stress are continuous but displacements
and their gradients can be discontinuous. Another disadvantage of the traditional
approach to the Godunov method is that it is necessary to call the equation of state
at each side of the cell edge to compute fluxes in the solution of the Riemann problem.
(That is, stress must be computed from the traced displacement gradients.) This leads
to additional computational expense; in fact, for complicated equations of state, the
determination of stress is the dominant cost. On the other hand, one possible difficulty
with our approach is that the stresses we construct at cell edges are not realizations
of the equation of state, and may therefore be “unphysical,” meaning that they could
violate constraints such as yield conditions.



Let us describe our approach to the slope construction. First, we rewrite the
equations of motion in the quasilinear form (c.f. [19])

| v 0 ;,17 0 v
2 wlol-La ¥ lalr] -

Note that the second equation in (3.1) is derived from the equation of state (2.2) by
differentiating it in time and using the second equation in (2.1). Also note that the
linearized coefficient matrix has characteristic structure given by

1 ~1
E? | = 1 -1 -A, 0 1 -1 .
5:% 0 ALpL Apy 0 AL Aupr ALpL
These results allow us to expand the jumps in cell averages of the flux variables in
terms of eigenvectors of the linearized coefficient matrix:

ELLLAL

+
ac” B 3 +1 /(’\P) +avh +2
act R = (/\p)J ,\p) o AUH—A/ M)k — AVH% ;

1
2
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] [ ] ooy /00 4o
+ = k k = k k _ Ayk ’
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ac~ B ac™ ac” 1
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Afterward, the expansion coefficients ac* are adjusted to prevent the introduction of
new extrema |[8]:

ac* = min{| (ac*)L || (ac®)r L% | (ac®)c |} x {sign{(ac®)L} + sign{(ac®)r}} .

This step is analogous to a local decoupling of the equations of motion into a set of
scalar evolution equations, and the slope limiting procedure has the effect of intro-
ducing a selective numerical viscosity in individual wave families [27]. Note that the
contribution of the numerical viscosity to the momentum equation is analogous to
the introduction of a viscous force, and the contribution to the stress-rate equation is
analogous to the introduction of a visco-elastic term in the constitutive law.

Recall that the characteristic speeds change discontinuously from elastic to plastic
behavior. This discontinuity destroys the ability of the slope construction to obtain
second-order accuracy, and may require the numerical scheme to separate an initial
discontinuity into two distinct shocks traveling in the same direction with different
speeds. As a result, at all cell edges where the neighboring cells are undergoing
different loading conditions we set the slopes to zero; that is, we fall back to the
first-order Godunov method.

We also note two other possible situations under which the slopes undergo further
modification. In the Eulerian version of the algorithm, we use fourth-order slopes
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to improve the resolution of contact discontinuities; this is discussed further in the
next section. For strong sharp discontinuities it is useful to introduce additional slope
limiting to reduce numerical oscillations; this slope flattening process is described in
§5.

Our next step is to use the limited slopes in the characteristic families to construct
values for the flux variables at the left- and right-hand sides of the cell edges at the
half-time level. This is accomplished by performing a Taylor expansion about the cell
centers in order to approximate the values at the cell edges and half-time levels, using
the quasilinear form (3.1) to replace the time derivative in the Taylor expansion, and
multiplying by the left eigenvectors of A to find the characteristic quantities, and then
throwing away characteristic information that goes the wrong way:

k+% k 1 k
HIR R A e

PPER LA P O B
k+ 3 k 1 k
Vv _ \% 1 k AT _
[ g ] - [ g ] - [ ALpL ] s ()\L)Hlm}acﬂl .
j+4.R J+1 i+l

We note that an alternative approach is to limit slopes in v and o directly, then
compute the expansion coefficients of the limited slopes and continue the characteristic
tracing.

Afterward, we resolve the interaction of the waves between the left and right
states through the approximate solution of a Riemann problem. Note that there are
good reasons for developing an approximate Riemann solver. Although an analytic
Riemann solver is available for the Antman-Szymczak model, it is far too expensive
to use in practice. The more serious problem is that for general equations of state,
the analytic solution of the Riemann problem is unknown. Thus our approach is to
develop an approximate Riemann solver by testing it on a problem for which the
solution is known.

In developing an approximate Riemann solver, we have several goals in mind. The
first is that the Riemann solver must be second-order accurate for weak waves. This
is in contrast to the approach in Antman and Szymczak [2], where an approximate
Riemann solver is employed, using only bounds on the characteristic speeds. For
systems of two equations, our approach is more similar to that of Harten et al. [16],
where an approximate Riemann solver employing one intermediate state is developed.
However, their approximate Riemann solver views the Godunov method in terms of
averaging an approximate evolution operator instead of formulating a conservative
difference. A consequence of this formulation is that their method would introduce
numerical viscosity at all jumps in displacement gradient, even contact discontinuities.
This violates our second principle, that we avoid the addition of numerical viscosity
at contact discontinuities in the Lagrangian frame.

Our third design principle is that the Riemann solver must be extendible to a
second-order scheme for more general deformations involving shear, in which there
may be as many as six nonzero characteristic speeds, plus a zero speed for the con-
tact discontinuities, and therefore six intermediate states. If we viewed the Godunov
method in terms of averaging the evolution of the Riemann problem solution, as in
[16], instead of constructing a conservative difference approximation, then the treat-
ment of six intermediate states would be difficult. Another design goal is to enforce
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some form of an entropy condition for strong waves. In this regard, we note that one
of the attractions of the approach in [16] is that the approximate Riemann solver can
be shown to satisfy an entropy condition. However, the proof requires that an entropy
function exist, which is not true for many of the applied models for solids (many of the
hypoelastic models do not even possess a strain energy [4]). Our alternative approach
will be to adjust the numerical diffusion in the approximate solution to the Riemann
problem, taking care that sufficient diffusion is introduced near strong discoutinuities
(see §5).

In this section, we will describe an approximate Riemann solver that satisfies the
first three of our design goals; this scheme will be modified in §5 to handle strong
discontinuities. The starting point in the approximate Riemann solver is to use the
available characteristic information to construct an approximate path in flux-variable
space for the wave interaction. First, we decompose the jump in terms of the charac-
teristic directions, by computing the expansion coeflicients a*:

- k41 k41
[a_ ] B [ 1 —'1 J | [ ; ] +2 [ ; ] +2
- k k -
at (/\LPL)]' (ALPL)j‘l'l g j+i R i ]‘+%,L

2

Next, we approximate the state that remains stationary, by either of two equivalent
expressions:

k k+i k k+% k
v ] v ] 1 _ v ] -1 N
o e 1A “ =1, A o
4 b Ll iR LR L

This approximate Riemann solver is very simple to implement, and works well for
weak waves. Note that we have previously used this Riemann solver in one-dimensional
problems involving both longitudinal and transverse motion. Even in this complicated
setting, the algorithm reduces to the solution of at most a 3 x 3 system of equations
[29].

In the next step of the Godunov method, we update the conserved quantities,
namely momentum and displacement gradient, using the following finite difference
calculation derived from (2.1) and the divergence theorem:

k+1 k k+3 k+4
€ . € . AT v v |
Loy Lol L it -3
Note that our difference scheme conserves momentum exactly. Furthermore, discrete
traveling discontinuities satisfly equations that are discrete forms of the Rankine-

Hugoniot conditions (2.4). The difference equations for the displacement gradient
can also be derived from the equation for the displacements at the cell edges,

=

k+3
dct1 = gk v, 2AT
i+3 e 3
dk+l _ dk+l
k+1 it+3 i-3
(€r); = T
AT

In other words, for one-dimensional computations it is equivalent to compute the cell-
centered values of the displacement gradient as spatial gradients of the displacement.
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At the end of this step, we have updated the velocity and displacement gradient to
the new time level.

All that remains is to update the stresses and history parameters. This step
depends on the model being used. For simple problems, such as the Antman-Szymczak
model, the stress update is very inexpensive. The process begins with the old value
of the history parameter m and the new value of the displacement gradient ¢,. Then
we perform the following computations:

o = max{c(e, ), min{e(e,,m),t(e.)}};
if 0 = ¢(¢,) solve 0 = e(e,, ) for 7,

elseif 0 = t(¢,) solve 0 = e(e,, ) for 7.

This produces new values for the stress o and the history parameter 7. For other
models, such as hypoelastic models, the stress update is significantly more complicated,
involving the determination of strain rates, rotation to an indifferent frame of reference,
and the integration of constrained ordinary differential equations. In order to maintain
the overall accuracy of the Godunov method, it is necessary that these computations
be second-order accurate. An example of the application of second-order Godunov
methods to a hypoelastic model, and of the modifications to the algorithm for the
equation of state, can be found in [28].

As numerical examples, we present the results of two computations using the
Godunov method presented above, in combination with the Antman-Szymczak model.
Here, we have chosen the model functions to be

0.49
G(CL,W)Z—m+O.7+€L—7r,
. L—
(1) = ~0.1 - —
cle)=-01- —-—,
- (14 ¢€.)?
1
te,) =1.1-

V2Fe

The first of our examples represents the typical case in impact problems, where
an elastic precursor and a plastic shock travel away from the point of impact. In this
case, the initial discontinuity is at the center of the grid, with # = 0.93, ¢, = 1.161
and v = 0 in the left-hand material, and 7 = 0.35, 0 = —0.252 and v = —1.081
in the right-hand material. The second of our examples has been chosen because it
is particularly difficult for the Eulerian version of the algorithm, as we will see in
the next section. In this example there is a weak elastic shock, a substantial contact
discontinuity, and elastic and plastic rarefactions. Again, the initial discontinuity is
at the center of the grid, with 7 = 4, ¢, = 4.397 and v = 0 in the left-hand material,
and 7 = 0.3, 0 = —0.05 and v = 0.468 in the right-hand material.

The numerical results for these two calculations, computed with a CFL factor of
0.9, are shown in figures 1 and 2. In the upper left-hand plot of each figure, the path
chosen by the solution of the Riemann problem is shown in velocity-stress space, while
the stress-strain relationship is shown in the top right-hand plot. Since the solution of
a Riemann problem is self-similar, we plot velocity, stress, displacement gradient and
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characteristic speed versus the similarity variable, namely distance from the initial
discontinuity divided by elapsed time. Thus the horizontal axis of these figures can
be used to read the shock speeds, and the plot of the Lagrangian characteristic speed
versus the similarity variable can be used to verify the satisfaction of the Lax entropy
condition [20]. The solid lines represent fine grid calculations with 1000 cells; the plus
signs represent the results of the same calculation with 100 cells. Note that shocks are
typically resolved in 2-3 cells, and rarefactions are accurately resolved. Also note that
the plots of characteristic speeds may show some significant variations in the middle
of constant states on a yield surface; these are due to the two choices of characteristic
speed available to the algorithm. Tiny numerical oscillations will cause the algorithm
to switch from plastic loading to elastic unloading or vice versa.

4. Eulerian algorithm. The Lagrangian and Eulerian frames of reference each
have advantages and disadvantages for simulation. Computations in the Lagrangian
frame of reference are useful for keeping material interfaces separate, since the mate-
rial interfaces are tracked by the computation. However, Lagrangian calculations can
require smaller timesteps near strong discontinuities. Furthermore, the Lagrangian
calculations can fail near strong rotations. For updated Lagrangian calculations (in
which the grid moves with the material particles), cell inversions or multi-dimensional
bow-ties can occur; for true Lagrangian calculations, the determinant of the deforma-
tion gradient can become zero or negative. On the other hand, Eulerian calculations
are useful for strong rotations (e.g., shear bands and cratering), since the grid cells
(typically) stay fixed in the current frame of reference. However, Eulerian calculations
typically smear contact discontinuities. Furthermore, Eulerian calculations for solids
are more expensive: they involve the solution of a larger system of equations, and the
solution of the Riemann problem is more difficult to approximate.

In this section, we will describe an Eulerian version of the higher-order Godunov
method. One purpose of this work is to develop the techniques required to approximate
the solution of the Riemann problems. However, if we are willing to put the problem in
a frame of reference moving sufficiently fast (i.e., faster than the characteristic speeds
of the material) then the solution of the Riemann problems is trivial, since it is given
by the upwind state. This observation allows us to run calculations using an exact
Riemann problem solution no matter what the model might be, and compare the
results against calculations requiring approximate Riemann problem solutions (such
as Lagrangian calculations).

Let us begin the description of the Eulerian algorithm. Note that the flux vector f
in the Eulerian form of the equations of motion (2.6) is a function of the flux variables

To

unlike the Lagrangian case, the vector of Eulerian flux variables is larger than the
vector of conserved quantities. As before, we can determine a quasilinear form (3.1)
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for the flux variables, obtaining the linearized coefficient matrix

v PE 0 00
0 v - 0 0
A=10 22(14+e) v 0 0
deg E )
0 14 ¢g 0 v 0
0 0 0 0 v
for which the matrix of eigenvectors is
—Pe 100 —PE
A 00 0 =Xg
X=1| Mp; 000 M |,
~1l—¢€z 01 0 —-1-¢g
0 0 01 0
and the matrix of eigenvalues is
v-Ag 0 0 0 0
0 v 00 0
A= 0 0 v O 0
0 0 0 v 0
0 0 0 0 v+ A

Here, the eulerian characteristic speed is

do 1+ ¢ oo 1 1 AL

= —— = 2‘
Oex  pe BGLPL(1+€E)2 (1+€E)

A2 =

Most of the steps in the Eulerian higher-order Godunov method now carry over as
in the Lagrangian case. The absolute value of the largest characteristic speed is Ag+|v|,
and the timestep is chosen using the elastic values for Az. The monotonized slope
construction is similar to the Lagrangian case as well. In other words, we compute
expansion coefficients
[ (v SDE)/(20)
ape + oo\
ac=X"'aw = Acg +aa(l+ cg)/peAl |,

ATy
(—av+ 22)/(2)5)

L PEME J

and limit these in the usual fashion.

We use fourth-order slopes to steepen the contact discontinuities. These are com-
puted simply by Richardson extrapolation of centered differences at distances of two
cells and four cells apart. Although subcell resolution [15] would have given much
better resolution of the contacts, we did not use this approach because it has not
yet been generalized to multiple spatial dimensions. On the other hand, second- and
fourth-order slopes can be determined in individual coordinate directions and then
used in an unsplit multidimensional version of Godunov’s method [9].

In the characteristic tracing step, the Taylor expansion, replacement of the time
derivative by the quasilinear form, and eigenvector replacement proceed as in the
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Lagrangian case. All that is left is the characteristic projection. The left states at
cell edges and half-time levels are built up as a sum over positive eigenvalues of the
linearized coefficient matrix, and the right states sum over negative eigenvalues:

k+1 k

wj+;L = w + /\Z)OX e,—{l (A )J }Ac1 ,
k+3 k

wj_;R = )\Z(OX el—{l + (A )J+1 }Ac, .

Here e; is the i’th axis vector in the Euclidean space of appropriate dimension.

Unlike the previous steps, the approximate solution of the Riemann problem is
significantly more complicated in the Eulerian frame than in the Lagrangian frame.
The essential ideas for our approximate Ricmann solver are contained in Bell el al.
[5], which was inspired by the work of Engquist and Osher [13].

Because we use the divergence theorem to derive the conservative difference equa-
tions, the evaluation of the time integral of the flux at a cell edge requires an approxi-
mation to the flux at the stationary state in the Riemann problem. In the Lagrangian
frame of reference, this is relatively easy to find, because the waves exhibit reflection
symmetry (i.e., the characteristic speeds come in plus/minus pairs); as a result, the
stationary state must be the constant state between the left-moving and right-moving
waves. Actually, this constant state may be split at zero speed by a contact discon-
tinuity, but the Rankine-Hugoniot conditions for this contact discontinuity show that
the flux must be continuous across the Lagrangian contact. In this case, we merely
average the fluxes on either side [29]. In the Eulerian frame, the stationary state in
the solution of the Riemann problem might occur in the middle of one of the nonlinear
waves; this requires extra care.

First, we decompose the jump between the left and right states in terms of the
expansion eigenvectors, which are chosen as in the Lagrangian frame (eigenvectors
with eigenvalues v — Az chosen from the left cell, eigenvectors with eigenvalues v+ A
chosen from the right, and the other eigenvectors are constant):

k+3 k+ 4

4
= X* " k
fiR wj+%‘L_X]ela1+ZXe,al+XJ+leg,a5.

1=2

Next, we check for transonic waves (waves with a change in the sign of the character-
istic speeds), and determine whether the reference state for the Engquist-Osher flux
should be the left or the right. Our principal objective is to avoid, as much as pos-
sible, an Engquist-Osher flux approximation involving the linearly degenerate waves
(those with characteristic speed equal to the particle velocity v). Thus, we choose the
left state as the reference state if v, + vg > 0; otherwise, we choose the right state
as the reference state. Additionally, if in the former case the slowest characteristic
speeds are negative in both the left and right cells, we move the reference state to the
constant state following this wave family. A similar move is made if the right state
is the reference state and both of the fast speeds are positive. Next, we evaluate the
flux at the reference state. Note that if for each wave family the characteristic speeds
on the left and right have the same sign, then we are done.

If there is at least one transonic wave family, we compute the Engquist-Osher con-
tribution to the flux computation. For simplicity, we assume that the initial reference
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state is the left state. Then we add to the flux at the left state an integral of the char-
acteristic speed over those parts of the path where the characteristic speed is negative
(if the reference state was moved to the first constant state, then the contribution of
the first leg of the path to the integral is ignored):

k+d

f:

1
+5

w

5
k43 A
= f(w]:;L)-{—ZXei/O min{A;,0}da; .
=1

A similar statement holds if the right state was the reference state, by considering
parts of the path where the characteristic speed is positive. The computation of the
integral involves estimating the point at which the characteristic speed becomes zero.
Using the pair of characteristic speeds for the same family from the cells on the left
and right, and assuming that this pair of characteristic speeds has opposite signs, we
use linear interpolation between the two to estimate the expansion coeflicient at which
the characteristic speed should be zero. (Note that the use of a linear approximation
to the characteristic speed is based on an assumption of no local extrema of the
wavespeeds; if these are permitted by other choices of the model, then more elaborate
representations of the characteristic speed must be used [1, 5].) We store the points
along the leg of the path where the wavespeeds are negative or zero, and evaluate the
flux at these points, obtaining an approximation

Xeo [ minA, 0)das = fuf™) - f(u)*").
0

Note that since A\ = A3 = Ay = v, we can combine the Engquist-Osher flux approx-
imations for the linearly degenerate families. Thus the final numerical flux has the
form

SE = 1wl [Fsd) - upeEn)

7+3 i+

+ | f(wehdy - f(wg_e?“)] + [f(wgnd) N f(wg)egin)] |

The final steps involve the conservative difference and stress update. These steps
are similar to the Lagrangian case.

As numerical examples, we present the results of the same two problems studied
in the Lagrangian case. In the first of the two examples, the Eulerian algorithm
resolves the shocks and contact discontinuities in 2-3 cells. On the other hand, the
results on the second problem indicate that the Eulerian algorithm is not always so
accurate. Here, the elastic shock moving left is highly smeared during startup, and is
not sufficiently strong to steepen itself into the typical 2-3 cell traveling discontinuity.
We have performed this calculation twice: the first case in a frame of reference where
the contact discontinuity is stationary, and the second in a frame of reference where all
of the characteristic speeds are positive. Note that in the latter case, the exact solution
of the Riemann problem is always given by the left state, so the poor performance of
the algorithm is not due to the approximate Riemann solver. Rather, the inaccuracy is
due to the interaction of the errors in capturing the contact discontinuity with the other
waves during the early stages of the calculation. Because there is so little variation in
the characteristic speed across the left-moving elastic shock, errors made in smearing
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the contact discontinuity can dominate the slight self-sharpening aspects of this weak
shock. When the contact discontinuity is tracked (as in a Lagrangian calculation), the
waves are captured very nicely. This problem with contact discontinuities reducing
the ability to capture other nonlinear waves in Eulerian calculations has also been
noted in the context of enhanced oil recovery (1], and was shown in that case as well
to be overcome with tracking of the contact discontinuity alone [18].

5. Strong discontinuities. Although we have not presented all of the results
here, the Lagrangian and Eulerian higher-order Godunov algorithms using the weak-
wave Riemann solvers discussed above have been tested on all 21 of the different
kinds of solutions to the Riemann problem for the Antman-Szymczak model that were
presented in [30]. The Eulerian algorithm worked well on all but two of the problems,
where in each case it greatly smeared a weak shock because of the presence of a
large contact discontinuity (see figures 4 and 5). On the other hand, the Lagrangian
algorithm worked well on all of the problems except one involving a large change in
characteristic speed, stress and velocity across a shock. In this case, the second-order
algorithm showed large oscillations behind the shock, which could be reduced but not
removed by using the first-order algorithm. (See figure 6 below, which was run using
the first-order algorithm at CFL = 1/2.) In this problem the left state is given by
T = 3.25, ¢, = 3.5, and v = 0, while the right state is given by 7 = 0.217, ¢ = 0.207
and v = —5.081. There are three waves in this example: an elastic shock precursing a
strong plastic shock moving to the left, and a shock moving to the right. The difficulty
in the Lagrangian algorithm derives from the coupling of the very large change in the
plastic wavespeed across the plastic shock, with the large jumps in stress and velocity.
This causes the weak wave approximation of §3 to construct averages of the stresses
and velocities in ways that do not correctly upwind the scheme. Let us discuss this
point in greater detail.

Consider Rusanov’s method [24]:
k+1

Sred = )+ S = 2 (b - uf)}%

= _ [ (o5 + UE) + %/\(vaz+1 = pLvy)
%(Vj+1 +vi)+ %’\((fL)j+1 - (fL)f)
Here A is an upper bound for the characteristic speeds along the path from u;”-' to
u;-‘H in the solution to the Riemann problem. When combined with a conservative
difference, this method is a first-order upwind method, and highly diffusive. For
the strong shock example with the Antman-Szymczak model, the Rusanov scheme
produces highly smeared elastic and elastic-plastic shocks, but a somewhat better
resolved plastic shock without numerical oscillations (See Figure 7.)
Next, we consider the weak wave approximation used in our version of Godunov’s
method above. After computing the expansion coefficients, we find that our approxi-
mation to the flux at the solution of the Riemann problem is
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(a’\LpL)_l;+l + (U)‘LPL);F + (/\LPL);?(/\LPL);+1(V§+1 - Vf) 1
(V/\L,DL);'c + (V'\LPL)fH + (U;+1 - Uf) ()‘LPL);‘c + (’\LPL);‘H

In the case where the left and right acoustic impedances are equal, i.e., (/\LPL);; =
(/\,,p,,);?+1 = ALp., this formula becomes

k A k k

k+3 —3(05 + 05,) — SEE(vE, v
(5.1) fj+l = 10k k 7541797
2 =3 (v; +vin) - 52

This has a form similar to Rusanov’s, and clearly adds a diffusion to the average flux.
On the other hand, if (MPL)_’{H > (/\,‘p,“);F (as al the strong shock in figure 6), the
weak wave approximation yields

k k(. k k
=07 = (Ap)j (Vi — v5)
f_ ~ k ok 1—0"

? —V]‘+1 h (/\LPL)J+]

This upwinds the velocity and downwinds the stress, leading to numerical oscillations.

We will present two solutions to this problem, both of which can be generalized
to problems involving shear. The first of the two methods uses a “strength-weighted
average” of the characteristic speeds. This method produces reasonably good results
for the test problems with the Antman-Szymczak model, and is the only method that
we have found to work successfully on the more realistic problem in §6. The second
method makes some further modifications to the Riemann problem solution in order
to guarantee that, at least at a strong discontinuity, the numerical flux is the Godunov
flux plus a numerical dissipation.

The principal observation in both our approximate Riemann solvers for strong
shocks is that the use of equal characteristic speeds for both the forward- and backward-
moving characteristic directions makes the method more like Rusanov’s. The natural
approach is to construct some sort of average of the characteristic speeds found on
either side of the cell edge where the flux is to be evaluated; in this way, the method
is still accurate for weak waves. However, if the Jump at the cell edge corresponds
to a single wave, then we would prefer to use the characteristic speed and direction
associated with this wave. Our first solution is to adopt a two-step approach to ap-
proximating the solution to the Riemann problem. First, we average the acoustic
impedances Ap on the left and right,

v Lok k
(/\P)j+% = E(’\jpj + Alp1pi41)
and use this average to determine the expansion coefficients of the jump:
_ -1 k+3 k+3
am | _| _1 -1 iR T s+l
a* (Ap) 41 (A0);41 ot _ it

J+3.R J+3.L
Next, we construct a “strength-weighted average” of the acoustic impedances,

(A _ (Mp)fla| + (/\p);‘+1|a+|
it T T T ]
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We then use this average to construct revised values of the expansion coeflicients and
the solution to the Riemann problem. This approximate Riemann solver is generalized
to problems involving shear by working with averages of the square roots of the acoustic
tensors.

The numerical results with first-order Godunov using the strength-weighted aver-
ages arc shown in Figure 8. This strength-weighted average of the acoustic impedances
allows the first-order Godunov method with the approximate Riemann solver to per-
form as well (at least for the Antman-Szymczak model) as first-order Godunov with
the analytic Riemann solver. (See Iigure 9.) There are some small numerical oscil-
lations just to the right of the strong plastic shock, even with the analytic Riemann
solver. These appear to be due to the fact that the strong plastic shock is moving
slowly (i.e., at a low CFL, since the timestep is dominated by the faster elastic speed
at the stationary state), and so the dissipation of first-order Godunov is not sufficient
to overcome the self-sharpening aspects of the strong shock. If, on the other hand,
we solve the problem in an Eulerian frame of reference with all waves moving to the
right, no significant numerical oscillations are detected. (See Figure 10.)

Unfortunately, we are not able to show that the strength-weighted average, by
itself, introduces sufficient numerical diffusion into the numerical method. Further-
more, the reasoning used to develop the strength-weighted average would suggest that
averaging the acoustic tensors (i.e., A2p? instead of Ap) should work; in numerical
experiments, this modification clearly does not work well. This suggests that we need
to examine the numerical diffusion of the strength-weighted average in more detail.

To simplify the discussion of this issue, we will assume that we have a shock at
edge j + -;— moving to the left with speed s < 0. Then the jump conditions for the

ShOCk are
— [ 0{4,1 - rri’:‘ } _ (P21 (VEpr = v5) N
o (i = ()}

7¥1 7Y
Also, the flux given by the strength-weighted average is

k+i k )
= — N 1 -
M TS Viin (ree),y ! JLVien =V )2
Thus, for a strong shock moving right, the strength-weighted average takes the form

+ s(or) ._(V)‘FH - v’;) :
J+1 —()\LPL;.H'% ! J ’ |

Here the Godunov flux is essentially the flux at the right; the strength-weighted average
adds to this flux a term depending on the jump in velocity. Since the jump in velocity
is negative (typically) for a shock, the correction to the Godunov flux is avoids being
antidiffusive provided that the terms multiplying the velocity jump are nonnegative.
In other words, diffusion is added to the Godunov stress if

[ " }k+% [ o }k (/\LPL)j+% +S(pL)j+% ] 1
v

I+

o

(’\LPL)_H-%- + S(PL)H% >0,
while diffusion is added to the Godunov velocity if

‘S(pL)_H.% ) 0
————2 _]1>0.
(’\LPL)]'-}-%
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Thus, the strength-weighted average cannot add diffusion to both the stress and ve-
locity simultaneously. Near a strong shock, the strength-weighted average will tend
toward the pre-shock acoustic impedance, which is the smaller of the two; this will
tend to add diffusion to the velocity component of the flux (i.e., equality of inixed
partials), and antidiffusion to the stress component (:.e., the momentum equation).
For typical impact problems, this is not necessarily a bad combination. Since the
material bulk modulus (:.e., 3—‘(’) is typically large in the post-shock state, small os-
cillations in the displacement gradient will be greatly amplified in the stress; thus, a
small amount of diffusion added to the Godunov velocity will contribute large damp-
ing to the stresses. On the other hand, the antidiffusion in the momentum equation,
if small, can be overcome by other diffusive aspects of the Godunov method (e.g.,
averaging of the evolution operator).

In order to make sure that we have sufficient diffusion, we have constructed an
alternative Riemann solver. We use different acoustic impedances in constructing the
expansion coefficients of the jump, depending on whether we are determining the stress
or velocity component of flux. Thus, our approximate Riemann solver looks like

o ‘ L )l 1 oh ok 1
(5.2) [:} :[‘3} n . 1J+2 [aiﬂ Uz] ’

. T vE o —vE L
7+ 7 LPLI g 1T Y

N=

where the acoustic impedances satisfy
(’\LPL)?+% > |3|(PL)J'+% )
(/\LPL);+% < |5“PL)]'+% :

In theory, the minimum and maximum of the acoustic impedances on either side of
the discontinuity could be used to satisfy these inequalities; in practice, additional
care must be taken. We construct an approximation to a local shock speed,

k
t5|j+1 = & | >
? (PLV)ipr = (poV);

which is unaffected by contact discontinuities (unlike the estimate in [16].) Then we

take

(pr)p1 = ‘gl‘((_PL ); +{eL)i+1)

~

: . kti

(/\1,/11.);4_% = min{(A.pe )j' ) (/\L/)L)§+l 1 is‘j,*_;(pl.)]'-f-%} )
ki

()‘LPL);+% = max{()‘LPL)j‘c ) ()‘L/)L)_’;+1 s Is‘j+;(pL)j+%} .

These acoustic impedances are then used in (5.2). In problems involving sh.ear, we
would construct the shock speed in the fastest wave family by looking at the jump in
normal stress divided by the jump in normal velocity. We would then construct the

max and min acoustic impedances for the fast wave, and use them to overwrite the

largest acoustic impedances of the original data. o -
Like Rusanov’s method, this approximate Riemann solver is highly diffusive; un-

like Rusanov’s method, it does not introduce diffusion at contact discontinuities. In
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order to prevent this Riemann solver from smearing weak shocks, we employ a strong
discontinuity detector. For this purpose, we compute an estimate of the strength of
the discontinuity, and a strong discontinuity detector:

k k k k
¢k | = max{ 1014301 |v”—rv‘%_1l}
it3 (A5 (er); > (w); ’

(k “(min
ey = min{max{Z— 0}, 1}.

If 71;4.1 is equal to 1, the discontinuity is considered to be strong and the approximate
2 . . .
Riemann solver for strong discontinuities is used; if it is equal to 0, the weak-wave

approximation is used. For discontinuities of intermediate strength, we use 1);.°+l to
2
average between the weak and strong fluxes. In addition, if 1);.'+, > () we set the slopes
2

to zero in the characteristic tracing step. For the computations in this paper, we took
Cmin = 1/4 and (max = 1/2. We also used the elastic speeds in the denominators of
Cﬁl'

“In summary, the strength-weighted Riemann solver has the advantage of using no
user-controlled parameters, but it occasionally produces some small overshoots during
startup, and it is not necessarily at least as diffusive as Godunov’s method with the
exact Riemann solver. The other approximate Riemann solver for strong shocks can
be shown to be at least as diffusive as Godunov’s method for a single discontinuity,
but it does involve two user-controlled parameters to turn it off away from strong
discontinuities. This second Riemann solver produces better overall results than the
strength-weighted averages for the Antman-Szymczak model, but does not work well
for the model in the next section.

These approximate Riemann solvers have greatly improved the first-order Go-
dunov algorithm. However, no matter which Riemann solver we use, the second-order
Godunov algorithm would still produce significant numerical oscillations near strong
discontinuities. This is because the small amount of numerical diffusion introduced by
the second-order Godunov method is more than overcompensated by the compression
of the shock. The result is that shocks become “too sharp,” with one or no points in
the discontinuity, and oscillations before or after the shock.

A solution is to reduce the method to first order near sharp discontinuities. Ac-
cordingly, we have introduced a revised form of “slope flattening” suggested by Colella
[8). Sharp discontinuities can be detected by jumps in stress or velocity 2 cells apart
that are essentially the same as jumps 4 cells apart. (In problems involving shear, we
look at jumps in pressure and normal velocity.) We compute

75 41— vEvEL
' 0.85 — —F——i——u ok, 0.85 - -L—t—i—-v R
(5.3) w; =max4¢0, min{1, 112 ) 2 2

0.1 ’ 0.1

(Here, the constants 0.85 and 0.1 have been determined experimentally and are not ad-
justed in practice.) Afterward, we multiply the limited slopes Ac;‘ by min{w;_1,w;,w;41}
in order to introduce additional nuinerical diffusion in cells near a sharp discontinuity.

In the figure 11 we show the result of a second-order Godunov Lagrangian calcu-
lation using the second Riemann solver for strong shocks and slope flattening. Note
that the shocks are now resolved in 2-3 cells.
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6. Application to realistic material models. In the preceding sections of the
paper, we have described second-order Godunov methods for the Antman-Szymczak
model in Lagrangian and Eulerian frames of reference. This material model is useful
for theorctical purposes, but does not describe the response of realistic materials. The
purpose of studying second-order Godunov methods applied to this model has been
to develop the numerical methods on problems with known answers. Qur goal in this
section is to apply the techniques developed for the Antman-Szymczak model to a
plasticity model of practical interest, involving the effect of a high-explosive pressure
load on the interior of a clay sphere. This next problem will involve a different material
model.

The cap model [25] is a well-known model for the deformation of soils and rock.
It consists of a system of ordinary differential equations for the components of the
stress tensor and a history parameter, with the system being constrained by plastic
yield conditions:

d
—l-?{ =gy, D), ¢(y)<0.

aT -
Here,

s
Y= P
€

is a vector consisting of the deviatoric stress, the pressure, and a history parameter
€(x) representing the plastic volumetric strain as a function of the location of the
movable cap. Also,

oS p, ) =[S -F(p, x)

represents the yield conditions. Finally, D is the symmetric part of the velocity gra-
dient (i.e., the strain rate). One of us has already described the implementation of
a second-order integration technique for this model [28]). He showed how to modify
the previous first-order integration of the cap model differential algebraic equations in
order to obtain a fully second-order algorithm, and applied the combined algorithm to
several problems involving weak to moderate waves. In this paper, we want to apply
the model to a problem involving a strong shock in spherical symmetry.

For the spherical explosion problem, the cap model funclions are the same as in
[28], except that the model parameters are different, and the bulk modulus is strongly
nonlinear. The nonlinearity in the bulk modulus is designed to represent the softness
of the initial material containing 3% air voids, relative to its compressed state in which
the air voids are gone and the material grains “lock-up.” The cap model parameters
are

A=0.115Mpa.,B = —1.89Mpa™",C = 0.095Mpa.,d = ~0.6Mpa~?,

R=25w=0.03,X, =0, = 300Mpa.,p = 1969kg./m.3
The bulk modulus takes the form

x = 8000. + 70. x max{p,0}*" Mpa ,
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where the pressure p also has units of Mpa. The boundary condition at the inner
radius takes the form of an incoming wave with known radial stress, given by the
pressure of the explosive gases. This is specified by the JWL equation of state

p = 7.5807 x 10° x exp(—4.9¢) + 0.08513 x 10° x exp(—1.1¢) + 0.01143 x 10° x ¢~

Here, ( is the ratio of the current volume of the explosive products (z.e., the inner cav-
ity) toits initial radius. The inner radius is at 0.2947m. and the outer radius is at 3.5m.
The clay is initialized with an infinitesimal cap, corresponding to x = —0.013972M pa.
Thus, the material is initially at yield.

Now that we have outlined the stress-strain relationship, let us return to the
equations of motion. In order to describe these equations in spherical symmetry, we
will introduce some notation. The (Eulerian) Cauchy stress tensor takes the form

S 0 0]
Se=1 0 S O )
0 0 Sgy

so the (Lagrangian) first Piola-Kirchhoff stress tensor is

Zew 0 0 Ser(z,/7)? 0 0
0 Zgg 0 = 0 Sgg(.l‘r/r)(a.’rr/ar) 0 .
0 0 Zg 0 0 Seg(z,/r)(0z,/Or)

where z, is the current (Eulerian) particle position, and r is the original (Lagrangian)
particle position. Then conservation of momentum can be written in the Lagrangian
form

, T2dVT 2 07,
oor or

or in a form that uses Cauchy stress in the Lagrangian frame,

—2Zpr — Zgg)r = 0.

o dv, 208,

S

The Lagrangian equation has quasilinear form
_8_ % + 1 -1 A, 0 ][ 1 11709 v
AT | Zer ALpr Aupr 0 AL ] ALPL ALpy or | Zry

2Zr1"ZQQ l 7
—_ PL T

1.2
851‘7.

or

—2(S,r — S45) -90.

- hro ¥
oLt

and is differenced in the following form:

: 1{. : 1
k+1 _ k : : ket
[v* _vj]p,§[1;+%_1j_%] —ar [(Z,,ﬂ)“_g ~(Zyr)
(6.1)

2 2
32

7 k+1 k k+1 kY .
_9ar [(4”)1 +(Zer);  (Zao)i™ + (Z“):] % [T2+
7

l—T2l =0.
2 7=3



On the other hand, the form employing the Cauchy stress has the quasilinear form
of v ], [t -1][-x o0 1 -1 7 a v
ot | S Aspe APk 0 AL Apps  AsPe or | Srr

Spr—Sgg 952
2rr=ogg “27
= 2 8373

PL
hro
PL

<

and is differenced in the form

1 (( kt3y3 k4313
1 b+l k+i] 3 kzj+l) "(lj_L) ]
k+1 k 3 3 2
[Vj+ _VJJPJ§ [7‘]+% —Tj_%J — AT [(Srr)]+%2 _(STT)]_%zJ ! k+%2
x. P —x. ¢
Itz )
(6.2)
onp [S T A S )y (Saa)i™ 4 (See)s] 1 (fed ) - (250 = 0
2 2 2 i+3 i3

Here, h,¢ is derived from the cap model, and

. T
hr@ = (hrt9 + 2Srr);‘ 3

)
Ap = Ape

’
r

z
Aupr = /\EPE(';)z

The quantities at the half-time level are determined by characteristic tracing and the
formula

1 1
51 =y el
furthermore, the stresses at the new time level are computed by the cap model algo-
rithm before the velocity update.

We used the difference scheme (6.2) instead of (6.1) for two reasons. For one,
(6.2) has a linearized coefficient matrix that uses the Eulerian acoustic impedances for
the characteristic directions, while the other uses the Lagrangian acoustic impedances.
Near the explosion, the stiffening of the material and the compression of the Eulerian
width of the Lagrangian cell lead to significant increases in the Lagrangian acoustic
impedances, while the Eulerian acoustic impedances are nicely behaved. Secondly, in
problems involving a point source the first Piola-Kirchhoff stress at zero Lagrangian
radius is not well-defined.

In attempting to compute the solution to this explosion problem, we encountered
a number of difficulties. First of all, the weak-wave Riemann solver produced serious
numerical oscillations that eventually led to tensile failure of the material and prema-
ture termination of the simulation, so it had to be replaced with one of the Riemann
solvers for strong shocks. Secondly, we found that the attenuation of the peak pressure
as the shock moved out to larger radii caused the strong shock detector eventually to
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turn off, unless the parameters (min and (max were set so low that essentially all dis-
turbances at early time appeared to be strong discontinuities; as a result, we could
not use the second of the two approximate Riemann solvers for strong shocks. Our
third problem was that the peak pressures and peak velocities occurred in different
cells; as a result, slope limiting tended to limit the two fields differently, resuiting in
numerical oscilations with the second-order algorithm.

In order to make the second-order Godunov method work on this problem, it has
been necessary to employ a number of numerical techniques. In order to handle the
first two difficulties, we used strength-weighted averages for the approximate Riemanu
problem. The third problem was treated by computing slopes in the flux variables
(radial stress and velocity), computing the factors by which standard limiting wants
to reduce the centered slopes, and then limiting both centered slopes by the minimum
of these two factors.

The results in figures 13-15 show the pressure histories at three particles, one
near the inner radius, one in the middle and the other near the outer radius. The
four plots in each of these figures show mesh refinement studies, at CFL = 1/2, using
uniform grid calculations on 100, 200, 400 or 800 cells. Note that the pressure peaks
are unresolved with 400 cells or fewer, and that there are numerical oscillations at
large radii for all of the calculations. (These oscillations occur even when the first-
order version of the algorithm is used.) We remark that the second-order algorithm
improves the height of the pressure peaks at the inner stations in the coarse uniform
grid calculations by roughly 10%, relative to calculations with the first-order version
of the algorithm. However, the second-order algorithm does not make a significant
difference in the accuracy of the results for stations at the large radii.

A significant amount of work was performed to determine the cause of the oscil-
lations at the outer station. We had suspected that the difficulty was due to the fact
that at late time the timestep was being determined by the very large wavespeeds that
developed in the highly crushed cells near the explosive; at late time, this meant that
the shock was being captured at a very low local value of CFL. In such circumstances,
the Godunov method introduces essentially no numerical dissipation during individ-
ual timesteps, and strong shocks may experience insufficient dissipation to prevent
numerical oscillations. In order to test our hypothesis, we constructed an adaptive
mesh refinement algorithm, which was specially designed to allow the refined mesh
to use as large an integral fraction of the coarse grid timestep as the fine grid CFL
constraint would allow. Calculations with the adaptive mesh refinement algorithm
showed that the uniform grid calculations with 800 cells are essentially converged.
Unfortunately, this adaptive mesh refinement algorithm did not remove the numerical
oscillations at late time. Next, we tried subcycling the cap model integration, tak-
ing as many as 50 timesteps for the equation of state integration for each fine grid
timestep. This reduced the oscillations somewhat, but did not completely eliminate
them. Numerical tests indicate that there is significant error in the cap model integra-
tion at the shock for pressures near the point where the first-order Taylor expansion
of the failure envelope was indistinguishable from a constant to the working accuracy
of a CRAY XMP. Thus, our current hypothesis is that these numerical oscillations are
due to a peculiar sensitivity of the clay cap model to numerical roundoff errors.

7. Summary. In this paper we extended our previous work on modeling of non-
linear waves in elastic-plastic solids in two ways. First, we constructed an Eulerian
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F1G. 13. Mesh refinement study for pressure time history at r = 50 cm.
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Station Data at Radius = 150 cm.
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FIG. 14. Mesh refinement study for pressure time history at r = 150 cm.
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Station Data at Radlus = 250 cm.

proasure (pa) x 108
50.00 =T T T T T ncells = 500
45.00 .
40.00 —
35.00 {— .
30,00 - —l
25,00 - —
20.00 — 1
15.00 — .
10.00 F «l
$.00 - —
om |- ]
L 1 ul 1 S Y (wc) x 1073
0.00 0.50 1.00 1.50 200
Station Data at Radius = 250 cm.
pressurc (pa) 1 108
T T T — T el 200
45.00 [ 1
40.00 — -
35.00 |- -
30.00 (- =
25.00 - T
noo- _
15.00 -
10.00 - 4
5.00 .
0.00 |- J i
1 B 1 ] 1 () 5103
0.00 0.50 1.00 1.50 200

Station Data at Radlus = 250 cm.

pressure (pa) x 10°
T T T T meells = 400
45.00 T
40.00 | .
35.00 — .
30,00 |- B
25.00 ﬂ
20.00 |- 1
15.00 - g
10.00 -~ -
5.00 |- i
0.00 J —
1 1 . | (soc) x 107
0.00 0.50 1.00 1.50 200
Station Data at Radlus = 250 cm.
preasure (pa) x 108
T T T T peella = 100
45.00 4
40.00 - -
35.00 i
30.00 - .
25.00 - .
20.00 |-
i ]
10.00 - B
5.00 |- J 4
0.00 a
1 1 1 1 J (e 5 103
Q.00 0.50 1.00 1.50 200

Fi1G. 15. Mesh refinement study for pressure time history at r = 250 cm.
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version of the algorithm, which required a significantly more complicated method for
the approximate solution of Riemann problems. Secondly, we constructed two alter-
native techniques for modifying the weak-wave approximation to the solution of the
Riemann problem, in order to handle strong discontinuities. Our numerical methods
were verified by comparison with a complete set of analytical solutions to the Riemann
problem for the Antman-Szymczak model, and the resulting algorithm was used to
solve a very difficult applied problem modeling an explosion inside a clay sphere. These
results represent the final necessary steps before extending the Godunov algorithm to
multidimensional problems.

The application of the Lagrangian algorithm to the explosion problem represents
a great deal of work, because the numerical techniques developed for gas dynamics
and for the Antman-Szymczak model did not work without modification. The early
numerical results provided only limited information, because numerical oscillations
typically made the cap model fail in tension, terminating the calculation. We had to
proceed slowly, testing each piece of the algorithm because each was equally suspect.
The discussion of the modifications needed to make the algorithm work provide some
useful insight, however. The list of problems roughly follows the sequence in which
they appear during the calculation. By plotting the numerical fluxes as a function of
timestep, we were able to detect the difficulties with the approximate Riemann solvers
at early time. Other difficulties were more localized, and detected by plotting profiles
of the solution across the grid.

We believe that the results in this paper illustrate that while many modern shock-
capturing methods work well on shock-tube problems for gamma-law gases, this does
not mean that they will apply to other problems just as easily. Some new applications,
such as shocks in solids, may require a significant amount of refinrement of the numerical
algorithm by experts trained in both the applications and the algorithms.
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